Issue |
MATEC Web Conf.
Volume 169, 2018
The Sixth International Multi-Conference on Engineering and Technology Innovation 2017 (IMETI 2017)
|
|
---|---|---|
Article Number | 01013 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/matecconf/201816901013 | |
Published online | 25 May 2018 |
Numerical study of the burner parameters on the thermal field in a sulfur recovery unit thermal reactor
Department of Aeronautical Engineering, National Formosa University, Taiwan
a Corresponding author: clyeh@nfu.edu.tw
A sulfur recovery unit (SRU) thermal reactor is the most important equipment in a sulfur plant and is negatively affected by high temperature operations. In this paper, the effect of burner parameters, including the clearance of the acid gas tip and the inlet air swirler angle, on the thermal field in a SRU thermal reactor are investigated numerically, with the aim to reduce the high temperature inside the thermal reactor and to ensure an acceptable sulfur recovery. The simulation results show that the burner with a smaller clearance of the acid gas tip produces a lower temperature, a lower exit SO2 mole fraction and higher exit S2 and H2S mole fractions. Among the clearancs of the acid gas tip investigated, the horizontal clearance of 152.4mm and vertical clearance of 240mm yield the lowest temperature, exit SO2 mole fraction and highest exit S2, H2S mole fractions. The burner with a smaller inlet air swirler angle produces a higher temperature, a higher exit SO2 mole fraction and lower exit S2 and H2S mole fractions. Among the swirler angles investigated, 60° yields the lowest temperature, exit SO2 mole fraction and highest exit S2 , H2S mole fractions.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.