Issue |
MATEC Web Conf.
Volume 169, 2018
The Sixth International Multi-Conference on Engineering and Technology Innovation 2017 (IMETI 2017)
|
|
---|---|---|
Article Number | 01010 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/matecconf/201816901010 | |
Published online | 25 May 2018 |
Strength characteristics of artificial organic soils stabilized with copolymer stabilizer
1
Faculty of Civil & Environmental Engineering, University Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia
2
Dairen Chemical (M) Sdn. Bhd., Malaysia
a Corresponding author: felix@uthm.edu.my
Organic soil is known as low strength material, and chemical stabilization is widely used to increase its bearing capacity. However, the use of traditional stabilizer has some limitations. Therefore, stabilization was carried out by using non-traditional stabilizer - Vinyl acetate-ethylene (VAE) copolymer emulsion in this study with the aim to determine its suitability to stabilize soil mixed with organic matter. Two types of artificial organic soil with kaolin: organic acid ratio of 5:5 (K5HA5) and 7:3 (K7HA3) were utilized. Control specimens were tested using pure kaolin. Different percentages of VAE (5%, 7.5%, 10%) were added in order to determine the minimum amount of stabilizer required to achieve a minimum strength increment of a 345 kPa. The strength of samples was determined with automated unconfined compressive test device. Specimens were air cured for 7 days prior to testing. Both K7HA3 with 7.5% VAE and K5HA5 with 10% VAE had achieved the minimum strength increment to be considered as effective stabilization. The strength of the artificial organic soil was found to be increasing with the increment of percentages of VAE used. Hence, it can be concluded that stabilizing mechanism of the artificial organic soils with VAE is not affected by organic matter.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.