Issue |
MATEC Web Conf.
Volume 167, 2018
2018 3rd International Conference on Mechanical, Manufacturing, Modeling and Mechatronics (IC4M 2018) – 2018 3rd International Conference on Design, Engineering and Science (ICDES 2018)
|
|
---|---|---|
Article Number | 02013 | |
Number of page(s) | 6 | |
Section | Mechanical and Manufacturing Engineering | |
DOI | https://doi.org/10.1051/matecconf/201816702013 | |
Published online | 23 April 2018 |
Geometry Modification of Helical Gear for Reduction of Static Transmission Error
1
Graduate school of Mechanical Engineering, Inje University, 50834 Gimhae, Gyoungnam, Korea
2
HSV-TRC Center, Inje University, 50834, Gimhae, Gyoungnam, Korea
1 Corresponding author: mechhsk@inje.ac.kr
Gear systems are extensively employed in mechanical systems since they allow the transfer of power with a variety of gear ratios. So gears cause the inherent deflections and deformations due to the high pressure which occurs between the meshing teeth when transmit power and results in the transmission error. It is usually assumed that the transmission error and variation of the gear mesh stiffness are the dominant excitation mechanisms. Predicting the static transmission error is a necessary condition to reduce noise radiated from the gear systems. This paper aims to investigate the effect of tooth profile modifications on the transmission error of helical gear. The contact stress analysis was implemented for different roll positions to find out the most critical roll angle in view point of root flank stress. The PPTE (peak-to-peak of transmission error) is estimated at the roll angles by different loading conditions with two dimensional FEM. The optimal profile modification from the root to the tip is proposed.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.