Issue |
MATEC Web of Conferences
Volume 166, 2018
The 2nd International Conference on Mechanical, Aeronautical and Automotive Engineering (ICMAA 2018)
|
|
---|---|---|
Article Number | 01005 | |
Number of page(s) | 5 | |
Section | Material Science and Mechanical Engineering | |
DOI | https://doi.org/10.1051/matecconf/201816601005 | |
Published online | 23 April 2018 |
Improved Fractographic Strength Estimates Based on Surface Profilometry
University of Michigan, Shanghai Jiao Tong University Joint Institute, UM-SJTU JI, 800 Dongchuan Road, Shanghai, 200240, China
Fractography is a valuable method that uses post-mortem topographical information to estimate the stress field near the fracture origin and help establish the root cause of failures. Typically, in glass and ceramics the mirror radius is one of the features sought for by fractographers since its length could be empirically related to the sample’s strength. The mirror radius is usually subjectively estimated by fractographers though microscopy measurements. Nonetheless, variations in the estimates introduced by inconsistent viewing modes and the subjectivity of observers could lead to substantial errors even when standard protocols such as ASTM C1678 were followed. In this manuscript, a novel method combining a fracture mechanics model describing the mist formation in silicate glasses with profilometry data carried out by confocal laser scanning microscope is introduced. The new method was shown to be able to objectively establish the mirror-mist boundary. Furthermore, it was found that the proposed technique was repeatable within 2% regardless of the magnification or imaging mode used. Whereas the average strength estimated per ASTM C1678 by eight individual observers was influenced by both the magnification and the imaging mode used and displayed standard deviation of over 3%.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.