Issue |
MATEC Web Conf.
Volume 165, 2018
12th International Fatigue Congress (FATIGUE 2018)
|
|
---|---|---|
Article Number | 19002 | |
Number of page(s) | 7 | |
Section | Thermo-Mechanical Fatigue | |
DOI | https://doi.org/10.1051/matecconf/201816519002 | |
Published online | 25 May 2018 |
Thermo-mechanical fatigue damage behavior for Ni-based superalloy under multiaxial loading
College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, 100124 Beijing, China
* Corresponding author: shangdg@bjut.edu.cn
The fatigue damage behavior was experimentally investigated in different axial-torsional thermo-mechanical loading conditions for Ni-based superalloy GH4169. The strain controlled tests were carried out with the same von Mises equivalent mechanical strain amplitude of 0.8% in the temperature range from 360°C to 650°C. The results show that the fatigue life is drastically reduced when the axial mechanical strain and the temperature are in-phase, which can be due to that the creep damage is induced by the tensile stress at high temperature. Moreover, the fatigue life is further decreased when the axial mechanical strain and the shear strain are out-of-phase, which can be attributed to that the non-proportional hardening can increase the creep and the oxidation damages. Furthermore, the tensile stress is crucial to the nucleation of creep cavities at high temperature compared with the shear stress. The tensile and shear stresses all can increase the creep damage under fatigue loading at high temperature. In addition, the oxidation damage can be induced during cyclic loading at high temperature, and it can be increased by the tensile mean stress caused in non-isothermal loading.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.