Issue |
MATEC Web Conf.
Volume 165, 2018
12th International Fatigue Congress (FATIGUE 2018)
|
|
---|---|---|
Article Number | 10004 | |
Number of page(s) | 5 | |
Section | Fatigue of Structures / Vibrations / in Service Fatigue Failures | |
DOI | https://doi.org/10.1051/matecconf/201816510004 | |
Published online | 25 May 2018 |
Fatigue Life Prediction of Self-Piercing Rivet Joints Between Magnesium and Aluminum Alloys
The University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI, USA
* Corresponding author: htkang@umich.edu
Various light materials including aluminum alloys and magnesium alloys are being used to reduce the weight of vehicle structures. Joining of dissimilar materials is always a challenging task to construct a solid structure. Self-piercing rivet (SPR) joint is one of various joining methods for dissimilar materials. Front shock tower structures were constructed with magnesium alloy (AM60) joined to aluminum alloy (Al6082) by SPR joints. To evaluate the durability performance of the SPR joints in the structures, fatigue tests of the front shock tower structures were conducted with constant amplitude loadings. Furthermore, this study investigated fatigue life prediction method of SPR joints and compared the fatigue life prediction results with that of experimental results. For fatigue life prediction of the SPR joints in the front shock tower structures, lap-shear and cross-tension specimens of SPR joint were constructed and tested to characterize the fatigue properties of the SPR joint. Then, the SPR joint was represented with area contact method (ACM) in finite element (FE) models. The load-life curves of the lap-shear and cross-tension specimens were converted to a structural stress-life (S-N) curve of the SPR joints. The S-N curve was used to predict fatigue life of SPR joints in the front shock tower structures. The test results and the prediction results were well correlated.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.