Issue |
MATEC Web Conf.
Volume 164, 2018
The 3rd International Conference on Electrical Systems, Technology and Information (ICESTI 2017)
|
|
---|---|---|
Article Number | 01037 | |
Number of page(s) | 17 | |
DOI | https://doi.org/10.1051/matecconf/201816401037 | |
Published online | 23 April 2018 |
Automatic Essay Scoring in E-learning System Using LSA Method with N-Gram Feature for Bahasa Indonesia
Faculty of Information Technology, Tarumanagara University, Letjend S. Parman No. 1, West Jakarta 11440, Indonesia
* Corresponding author: rsctvx@gmail.com
In the world of education, e-learning system is a system that can be used to support the educational process. E-learning system is usually used by educators to learners in evaluating learning outcomes. In the process of evaluating learning outcomes in the e-learning system, the form type of exam questions that are often used are multiple choice and short stuffing. For exam questions in the form of essays are rarely used in the evaluation process of educational because of the difference in the subjectivity and time consuming in the assessment process. In this design aims to create an automatic essay scoring feature on e-learning system that can be used to support the learning process. The method used in automatic essay scoring is Latent Semantic Analysis (LSA) with n-gram feature. The evaluation results of the design features automatic essay scoring showed that the accuracy of the average achieved in the amount of 78.65 %, 58.89 %, 14.91 %, 71.37 %, 64.49 % in the LSA unigram, bigram, trigram, unigram + bigram, unigram + bigram + trigram.
Key words: Automatic essay scoring / E-learning / Latent semantic analysis / N-gram / Singular value decomposition
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.