Issue |
MATEC Web Conf.
Volume 162, 2018
The 3rd International Conference on Buildings, Construction and Environmental Engineering, BCEE3-2017
|
|
---|---|---|
Article Number | 03003 | |
Number of page(s) | 5 | |
Section | Water Resources Engineering and Geomatics | |
DOI | https://doi.org/10.1051/matecconf/201816203003 | |
Published online | 07 May 2018 |
Evaluation of different types of artificial intelligence methods to model the suspended sediment load in Tigris River
Building and Construction Engineering Department. University of Technology, Baghdad
* Corresponding author: mmalmukhtar@gmail.com
Modeling of suspended sediment load in rivers has a major role in a proper management of water resources. Artificial intelligence has been identified as an efficient way to model the complex nonlinear hydrological relationship. In this study, Adaptive Neuro Fuzzy Inference System (ANFIS), in addition to two different kinds of Artificial Neural Network (ANN) i.e. feedforward and radial basis networks were used and compared to model the suspended sediment load (SSL) in Tigris River-Baghdad using the streamflow discharge as input. To this end, an intermittent data of SSL and streamflow were collected over the period 1962-1981 from Sarai station in Baghdad. 70 % of these data was used to calibrate (train) the networks and the remaining 30% for the validation (test). The coefficient of determination (R2), root mean square error (RMSE), and Nash and Sutcliffe model efficiency coefficient (NSE) were used to judge whether the observed and modelled data belong to the same distribution. Results revealed that the ANFIS model outperform the other methods. R2, RMSE, and NSE of ANFIS during the calibration phase were equal to 0.58, 75617, and 0.58, respectively and during the validation were 0.72, 27944, and 0.59, respectively. Therefore, ANFIS approach is recommended to estimate the river suspended sediment load.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.