Issue |
MATEC Web Conf.
Volume 156, 2018
The 24th Regional Symposium on Chemical Engineering (RSCE 2017)
|
|
---|---|---|
Article Number | 05013 | |
Number of page(s) | 5 | |
Section | Materials and Processing | |
DOI | https://doi.org/10.1051/matecconf/201815605013 | |
Published online | 14 March 2018 |
Mass Balances and Thermodynamics Study of Thermal Triglyceride Hydrolysis
Department of Chemical Engineering, Institut Teknologi Bandung, Indonesia
* Corresponding author: anistyami@che.itb.ac.id
Triglyceride hydrolysis is a process to convert triglyceride into fatty acids and glycerol, which are important precursors in oleochemical industry. Commercial technology of triglyceride hydrolysis established at the present time is thermal hydrolysis (a.k.a. Colgate-Emery process), which operates in robust condition (250°C, 50 bar). Although this technology has been the most preferable process to produce fatty acid for a century, but information published about its process parameters is limited. In this study, an analysis of mass balances and thermodynamic aspects of thermal hydrolysis of triglyceride was performed based on literature review. Composition of input and output process stream shows some indication of polymerization and/or hydrogenation reaction of linoleic and linolenic acid, and also geometric isomerization of oleic acid. Thermodynamic feasibility of reaction was compared between high temperature and room temperature. In the near future, more energy-efficient and less-side reaction technology to produce fatty acids seems to compete with this conventional process.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.