Issue |
MATEC Web Conf.
Volume 156, 2018
The 24th Regional Symposium on Chemical Engineering (RSCE 2017)
|
|
---|---|---|
Article Number | 03008 | |
Number of page(s) | 7 | |
Section | Processes for Energy and Environment | |
DOI | https://doi.org/10.1051/matecconf/201815603008 | |
Published online | 14 March 2018 |
Simulation of the Oxidation and Combustion of Mixed Diesel-Biodiesel Fuel
Department of Chemical Engineering, Faculty of Engineering, University of Indonesia, UI Campus, Depok 16424, Indonesia
* Corresponding author: muharam@che.ui.ac.id
A comparative simulation-based research has been set up to obtain valid kinetic models of the oxidation and combustion of biodiesel surrogate and diesel surrogate, as well as mixed diesel-biodiesel surrogates which is used to predict their ignition delay times (IDT). The research consists of the development of the detailed kinetic models of the oxidation and combustion of biodiesel surrogate and diesel surrogate, the validation of the two models with the corresponding experimental IDT data, the merging and the validation of the two models for mixed diesel-biodiesel surrogates. The biodiesel surrogate kinetic model was validated with the experimental IDT data of methyl 9-decenoate at 20 atm and three equivalence ratios. The diesel surrogate kinetic model was validated with the experimental IDT data of n-hexadecane at the pressure ranging from 2 atm to 5 atm and the equivalence ratio of 1.0. The diesel-biodiesel surrogate kinetic model was validated with the experimental IDT data of real diesel-biodiesel fuels for four compositions and at 1.18 atm. The validation results of all models show that the models and the experiments are in good agreement.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.