Issue |
MATEC Web Conf.
Volume 156, 2018
The 24th Regional Symposium on Chemical Engineering (RSCE 2017)
|
|
---|---|---|
Article Number | 01011 | |
Number of page(s) | 4 | |
Section | Biochemical and Biomedical Engineering | |
DOI | https://doi.org/10.1051/matecconf/201815601011 | |
Published online | 14 March 2018 |
Tailoring Properties of Acidic Types of Natural Deep Eutectics Solvents (NADES): Enhanced Solubility of Curcuminoids from Curcuma zeodaria
Department of Chemical Engineering, Faculty of Technology Industry, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
* Corresponding author: orchidea@chem-eng.its.ac.id
Recently Natural Deep Eutectic Solvents (NADES) show their potential as a promising green solvents at 21th century for extraction of natural products. Rutin, a poorly water soluble flavonoid, was reported better solubilized in NADES than in water as well as a paclitaxel and ginkgolide B, a completely water-insoluble compound. In case of curcuminoids, phenolic compounds from powder of Curcuma Zeodaria shown better solubilized in acidic type of NADES such malic acid-sucrose-water (MAS-H2O = 1:1:11, mole ratio) and citric acid-sucrose-water (CAS-H2O = 1:2:15, mole ratio) compare to water and ethanol. Indicating that NADES, a water-based solvent, appropriate for extracting curcuminoids. However, the inherent high viscosity of NADES hamper the process extraction. Lowering the viscosity, water content of NADES is varied, adding a certain amount of water up to 60% of water content. All the varied water content of both CAS-H2O and MAS-H2O were successfully extracted curcuminoids. Yielded 0.06-0.16 mg curcuminoids/g dry weight. However, 60% of water content of both CAS-H2O and MAS-H2O gave more or less similar value of curcuminoids to CAS-H2O (20% of water) and MAS-H2O (30% of water). Curcuminoids is more stable in CAS-H2O compare to MAS-H2O for 96 h of time duration.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.