Issue |
MATEC Web Conf.
Volume 154, 2018
The 2nd International Conference on Engineering and Technology for Sustainable Development (ICET4SD 2017)
|
|
---|---|---|
Article Number | 01119 | |
Number of page(s) | 4 | |
Section | Engineering and Technology | |
DOI | https://doi.org/10.1051/matecconf/201815401119 | |
Published online | 28 February 2018 |
Recycled fiber from straw waste: effect of take-up speed and spinneret diameter to linear density and tenacity
Politeknik STTT Bandung, Textile Engineering Dept., 40272, Bandung, Indonesia
* Corresponding author: asril-s@kemenperin.go.id
Recycled fiber has a great potential as a solution to meet overgrowing synthetic fiber demand and reduce plastic waste in the same time. In the previous research, bottle cap waste is used as the material of the recycled fiber. The result shows that fiber tenacity of recyled fiber from bottle cap waste has low tenacity, different polymer. This phenomena may have been caused by the present of pigment molecule. This research focused on producing recycled fiber from straw waste which has low pigment content. Straw waste was washed and cleaned before the cutting process. Then, the waste was processed in the experiment melt spinning machine with plunger system and single hole orifice in various diameter, 4 mm, 10 mm and 15 mm. The processing temperature was 140° C temperature in three take-up speed, 3.00 m/minutes, 10.30 m/ minutes and 19.16 m/ minutes. The diameter and cross section shape of recycled polyethylene fiber were obtained by using electric microscope with software assistance. The linear density of the recycled fiber was analysed by calculating it with denier and the mechanical strength of the fiber was measured in accordance with the ASTM D 3379-75 standard. High take-up speed leads to higher linear density and take-up speed value is proportionally linear with the tenacity of fiber produced. Moreover, the spinneret diameter is proportionally linear with linear density but it is inversely linear with the tenacity of the fiber produced.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.