Issue |
MATEC Web Conf.
Volume 154, 2018
The 2nd International Conference on Engineering and Technology for Sustainable Development (ICET4SD 2017)
|
|
---|---|---|
Article Number | 01044 | |
Number of page(s) | 6 | |
Section | Engineering and Technology | |
DOI | https://doi.org/10.1051/matecconf/201815401044 | |
Published online | 28 February 2018 |
Design of a new PID controller based on Arduino Uno R3 with application to household refrigerator
1
Department of Refrigeration and Air Conditioning, State Polytechnic of Bandung (POLBAN), Indonesia.
2
Alumnus of Department of Refrigeration and Air Conditioning, State Polytechnic of Bandung, Indonesia.
* Corresponding author: e_erham@yahoo.com
A refrigeration system to maintain a desired compartment temperature usually uses a thermostat as an on-off controller. In fact, the thermostat has some disadvantages. The main problem of system which is related to the thermostat is the biggest energy consumption in household appliances. In this paper, to solve the problem was designed a new PID controller based on an Arduino Uno R3 with application to a household refrigerator. In this case, the Arduino Uno was uploaded with PID controller algorithm. Then, in implementation to determine controller parameter values was defined new criteria. After that, to obtain the best refrigeration system performance was also proposed new performance criteria based on experimental data. The experimental results showed that the proposed control system was able to maintain the desired temperature with steady-state error of about 0.044°C. In addition, in steady state the control system for the refrigerator was able to the energy saving of about 30% and it almost did not depend on cooling load quantity.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.