Issue |
MATEC Web Conf.
Volume 251, 2018
VI International Scientific Conference “Integration, Partnership and Innovation in Construction Science and Education” (IPICSE-2018)
|
|
---|---|---|
Article Number | 01001 | |
Number of page(s) | 8 | |
Section | Building Materials | |
DOI | https://doi.org/10.1051/matecconf/201825101001 | |
Published online | 14 December 2018 |
Master Function for Analytical Determination of the Interlayer Bond Shear Stiffness and Fatigue Functions for Asphalt Pavements
Department of Engineering Sciences, University of Applied Sciences Berlin, Germany
* Corresponding author: Borislav.Hristov@HTW-Berlin.de
In order to determine the shear stiffness at the interface between asphalt layers and to take into account the interactions of repeated traffic loading, acceleration and braking processes as well as temperature influence, a complicated apparatus for cycling testing of the interlayer bond (CTIB) has been developed. An extensive experimental procedure has been created to include all factors that influence the interlayer bond. Using the experimental results, a master function for the analytical assessment of the shear stiffness has been established. The regression which approximates most accurately the experimentally determined shear stiffness values is the sigmoid function. Through implementation of the master function into a finite element program the fatigue status of asphalt pavements, which is affected by the interlayer bond of different quality, have been calculated over the service life of 30 years using the German method for computational design according to RDO Asphalt 09. The results presented below are based on the results of IGF project “Cyclic Shear Stiffness and Shear Fatigue Testing for Evaluation and Optimization of Interlayer Bond in Asphalt Pavements”, supported by the Association of Industrial Research Communities (AIF) of the German Asphalt Institute (DAI) in cooperation with TU Braunschweig.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.