Issue |
MATEC Web Conf.
Volume 250, 2018
The 12th International Civil Engineering Post Graduate Conference (SEPKA) – The 3rd International Symposium on Expertise of Engineering Design (ISEED) (SEPKA-ISEED 2018)
|
|
---|---|---|
Article Number | 03005 | |
Number of page(s) | 12 | |
Section | Structural Engineering | |
DOI | https://doi.org/10.1051/matecconf/201825003005 | |
Published online | 11 December 2018 |
Crack-healing in cementitious material to improve the durability of structures: Review
1
Department of Structure and Materials, Faculty of Civil Engineering, UTM, 81310 Skudai, Johor Bahru
2
UTM Construction Research Centre, Institute for Smart Infrastructure and Innovative Construction, Faculty of Civil Engineering, UTM, 81310 Skudai, Johor Bahru
* Corresponding author: enghas78@gmail.com
One of the most commonly used materials in the field of construction is concrete. Nevertheless, there are strong inclinations for concrete to form cracks, which would then allow the penetration of both aggressive and harmful substances into the concrete. Subsequently, this will decrease the durability of the affected structures. Thus, the ability for cracks to heal themselves in the affected cementitious materials is in demand to prolong the life of any structure. Autogenous self-healing is one approach to overcome smaller crack widths (macrocracks). Nowadays, crack width-healing is of great importance. Having said that, both polymers and bacteria are the most common approach to enhance autogenous self-healing and bond crack faces. Crack width-healing of up to 0.97 mm was achieved via bacteria-based self-healing. In this paper, the mechanisms of these approaches and their efficiency to heal crack were highlighted. Both bacteria-and polymers-based self-healing are promising techniques for the future. However, long term studies are still required before real applications can be made.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.