Issue |
MATEC Web Conf.
Volume 249, 2018
2018 5th International Conference on Mechanical, Materials and Manufacturing (ICMMM 2018)
|
|
---|---|---|
Article Number | 01008 | |
Number of page(s) | 6 | |
Section | Functional Material Design and Development | |
DOI | https://doi.org/10.1051/matecconf/201824901008 | |
Published online | 10 December 2018 |
The competitive effect of non-magnetic defect and films thickness on the ferromagnetic critical temperature in Ising thin-films
Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
In this work, Monte Carlo simulation was employed to investigate the competitive effect of non-magnetic defects and the thickness on the ferromagnetic behavior of Ising spins in a reduced geometry, i.e. thin-films. The magnetic properties were investigated as functions of temperature, defect concentration, and films’ thickness, especially in the ferromagnetic phase transition region. The finite size scaling was performed via the fourth order cumulant of the magnetization to extract the critical temperatures. From the results, the extracted critical temperatures agree well with previous theoretical investigation, where applicable. With increasing concentration of the nonmagnetic defects, the Ising phase-transition-point slightly shifts towards lower temperature, while the increase of films thickness enhances the critical temperature value. Being confirmed by the main-effect-plot analysis, the increase in thickness has much greater influences on the critical temperature than that of the defect concentration, which could be described in term of the average ferromagnetic interaction spin. As the role of the defect is negligence in the range of considered defect concentration (up to ten percent), it therefore suggests that the preparation of ferromagnetic films can be done in normal operating condition where defects usually occur. It may be not economically worth to aim for the perfectly smooth films when the associated application operates at temperatures away from the critical point.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.