Issue |
MATEC Web Conf.
Volume 241, 2018
International Conference on Structural Nonlinear Dynamics and Diagnosis (CSNDD 2018)
|
|
---|---|---|
Article Number | 01024 | |
Number of page(s) | 4 | |
DOI | https://doi.org/10.1051/matecconf/201824101024 | |
Published online | 03 December 2018 |
Design of a quasi-periodic vibration energy harvester based on an electromagnetic technique
University Bourgogne Franche-Comté, FEMTO-ST Institute, CNRS/UFC/ENSMM/UTBM, Department of Applied Mechanics, 25000 Besançon, France
* Corresponding author: zergoune.uni@gmail.com
In the present paper, a quasi-periodic vibration energy harvester with magnetic coupling is proposed using the benefits of the energy localization. The proposed quasi-periodic system consists of moving magnets held by elastic structures and coupled by a magnetic force. The mistuning of the device can be achieved by changing either the linear mechanical stiffness or the mass. The whole system has been modelled by forced Duffing equations for each degree of freedom, which include the magnetic nonlinearity and the mechanical damping. The governing equations have then been solved using the harmonic balance method coupled with the asymptotic numerical method. The obtained numerical results show that the total harvested power was increased by 11 % with a bandwidth of 2.7 % thanks to the energy localization phenomenon compared to the reference case.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.