Issue |
MATEC Web Conf.
Volume 149, 2018
2nd International Congress on Materials & Structural Stability (CMSS-2017)
|
|
---|---|---|
Article Number | 02092 | |
Number of page(s) | 4 | |
Section | Session 2 : Structures & Stability | |
DOI | https://doi.org/10.1051/matecconf/201814902092 | |
Published online | 14 February 2018 |
Solar Desalination by Humidification-Dehumidification of Air
Mohammadia School of Engineering, Mohammed V University-Agdal, Rabat, Morocco
The importance of supplying potable water can hardly be overstressed. In many arid zones, coastal or inlands, seawater or brackish water desalination may be the only solution to the shortage of fresh water. The process based on humidification-dehumidification of air (HDH) principle mimic the natural water cycle. HDH technique has been subjected to many studies in recent years due to the low temperature, renewable energy use, simplicity, low cost installation and operation. An experimental test set-up has been fabricated and assembled. The prototype equipped with appropriate measuring and controlling devices. Detailed experiments have been carried out at various operating conditions. The heat and mass transfer coefficients have been obtained experimentally. The results of the investigation have shown that the system productivity increases with the increase in the mass flow rate of water through the unit. Water temperature at condenser exit increases linearly with water temperature at humidifier inlet and it decreases as water flow rate increases. HDH desalination systems realised on also work at atmospheric pressure; hence they do not need mechanical energy except for circulation pumps and fans. These kinds of systems are suitable for developing countries. The system is modular, it is possible to increase productivity with additional solar collectors and additional HDH cycles.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.