Issue |
MATEC Web Conf.
Volume 149, 2018
2nd International Congress on Materials & Structural Stability (CMSS-2017)
|
|
---|---|---|
Article Number | 02011 | |
Number of page(s) | 6 | |
Section | Session 2 : Structures & Stability | |
DOI | https://doi.org/10.1051/matecconf/201814902011 | |
Published online | 14 February 2018 |
Developing a combined Light Detecting And Ranging (LiDAR) and Building Information Modeling (BIM) approach for documentation and deformation assessment of Historical Buildings
1
College of Geomatics and Surveying Engineering, IAV Hassan II, Rabat, Morocco
2
Department of Geomatics, Faculty of Environmental Design, KAU University, Jeddah, Saudi Arabia
3
Department of Civil Engineering, Faculty of Engineering, Aswan University, Egypt
Cultural heritage plays a fundamental role in preserving the collective memory of a nation. However, it is noted that many historical buildings suffer from serious deformation that may lead to deterioration or loss. In this paper, we propose an approach for documentation and deformation assessment of historical buildings based on the combination of Terrestrial Light Detecting And Ranging (LiDAR) technology and Building Information Models (BIM). In order to digitally archive the current state of a historical building, classical surveying techniques (Traversing, Levelling and GPS) are integrated with Terrestrial Laser scanner (TLS). A Leica Scan Station C10 is used to accomplish the 3D point cloud acquisition. In addition, Leica GNSS Viva GS15 receivers, a Leica Total Station TCR 1201+ and a Leica Runner 24 are used for classical surveying. The result is a 3D point cloud with high resolution, which is referenced according to the local geodetic reference system Ain el Abd UTM 37N. This point cloud is then used to create a 3D BIM that represents the ideal condition of the building. This BIM also contains some important architectural components of the historical building. To detect and assess the deformation of building’s parts that require an urgent intervention, a comparison between the 3D point cloud and the 3D BIM is performed. To achieve this goal, the main parts of the building in the BIM model (such as ceilings and walls) are compared with the corresponding segments of the 3D point cloud according to the normal vectors of each part. A case study that corresponds to a historical building in Jeddah Historical City named ’Robat Banajah’ is presented to illustrate the proposed approach. This building was built to serve pilgrims that want to perform the fifth pillar of Islam. Then, it was endowed (waqf) as a charity housing for widows and disabled. The results of assessing deformations of the case study show that some rooms are in a degraded condition requiring urgent restoration (distortions reach up to 22 cm), while other building parts are in a non-critical condition.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.