Issue |
MATEC Web Conf.
Volume 149, 2018
2nd International Congress on Materials & Structural Stability (CMSS-2017)
|
|
---|---|---|
Article Number | 01059 | |
Number of page(s) | 5 | |
Section | Session 1 : Materials & Pathologies | |
DOI | https://doi.org/10.1051/matecconf/201814901059 | |
Published online | 14 February 2018 |
Influence of cement content on the thermal properties of compressed earth blocks (CEB) in the dry state
1
Mohamed V University, Department of physics, Laboratory of Mechanics and Materials, Rabat, Morocco
2
Mohamed V University, Department of physics, Team of Modeling and simulating in Mechanics and Energetic, Rabat, Morocco
3
Mohamed V University, Department of physics, of thermodynamics, Rabat, Morocco
The Compressed Earth Block (CEBs) is one of the kinds of building materials which stabilized by cement. Soil is a basic component, a renewable, non-toxic and natural resource. Samples must be stabilized with a limited percentage of cement so that samples do not lose their natural properties including thermal comfort and on other hand offer high mechanical resistance. The objective of this work is to study the effect of cement content on thermal behavior of the building material of CEBs in the dry state, by studying variation of temperature with time, and measuring thermal conductivity and the specific heat, with respect to the various cement ratios added to the samples. This study is mainly an experimental and numerical, to determine how the thermal behavior evolves with the cement content in the samples CEBs. The soil was extracted from the famous city Fez in Morocco, Fez is known for its several historical monuments and buildings. After determining its granulometry and other specific characteristics, the CEBs are made by mixing soil with cement. The samples are put in plastic bags for two weeks, then removed the plastic bags from the samples and let them to dry again for an additional two weeks away from direct sun. The samples CEBs are taken cylindrical form (8 cm diameter with an average height of 12 cm).
The experimental method consists of a hot ring for which a numerical modelization was developed to fit the mathematical equations of heat diffusion and the boundary conditions. For the numerical model Bouabid and Cherraj have developed numerical model which allow, with a good accuracy, to quantify the evolution of the thermal behavior of the earth material in function of cement content.
Indeed, the study provides information on the influence of the cement percentage on the thermal behavior of the samples CEBs, the thermal behavior of samples increase with increase cement content.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.