Issue |
MATEC Web Conf.
Volume 149, 2018
2nd International Congress on Materials & Structural Stability (CMSS-2017)
|
|
---|---|---|
Article Number | 01056 | |
Number of page(s) | 4 | |
Section | Session 1 : Materials & Pathologies | |
DOI | https://doi.org/10.1051/matecconf/201814901056 | |
Published online | 14 February 2018 |
Study of the effect of Kaolin in the mortar of cement matrices by confinement of ion exchange resins
1
Laboratory of Materials Electrochemistry and Environment, Faculty of Science, University Ibn Tofail, BP 133, 14000 Kenitra, Morocco.
2
Unit of Management of radioactive waste, National Center of Nuclear Energy, Sciences and Nuclear Techniques (CNESTN), Center for Nuclear Studies of Maamoura (CENM), PB 1382, 10001 Kenitra, Morocco.
3
Laboratory of Separation Processes, Faculty of Science, University Ibn Tofail, BP 133, 14000 Kenitra, Morocco.
* Corresponding author: E-mail: labiedsoumiya@gmail.com; Phone :(212) 6 01 70 65 99
Radioactive waste arising as a result of nuclear activities should be safely managed from its generation to final disposal in an appropriate conditioned form to reduce the risk of radiation exposure of technical personnel and of the public and to limit contamination of the environment. The immobilization of low and intermediate level radioactive wastes in cementitious matrices is the most commonly used technique to produce inexpensive waste matrix that complies with regulatory requirements in order to protect humans and the environment against nuisance caused by ionizing radiation. Cement based materials are used in radioactive waste management to produce stable waste forms. This matrix constitutes the first build engineering barrier in disposal facilities. In this work, the kaolin is used to enhance the mechanical performance of the matrix of confinement of ion exchange resins by gradually replacing the sand in mortar with kaolin clay. The Kaolin clay sample was a special pure product, sourced from a foreign country. The maximum quantity of resins that can be incorporated into the mortar formulation without the packages losing their strength is 13.915% which results in a better mechanical strength at 6.7686 MPA compression with kaolin.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.