Issue |
MATEC Web Conf.
Volume 147, 2018
The Third International Conference on Sustainable Infrastructure and Built Environment (SIBE 2017)
|
|
---|---|---|
Article Number | 07002 | |
Number of page(s) | 6 | |
Section | Geothechnical Engineering | |
DOI | https://doi.org/10.1051/matecconf/201814707002 | |
Published online | 22 January 2018 |
Modeling Slope Topography Using Unmanned Aerial Vehicle Image Technique
Department of Civil Engineering, National Taiwan University, 10617 Taipei, Taiwan
* Corresponding author: stillya81@gmail.com
Nowadays, a wide range of site planning, field investigation and slope analysis need to be carried out for slope protection and landslide-related disaster reduction. To enhance the efficiency of topography modeling, unmanned aerial vehicle (UAV) has become a new surveying technique to obtain spatial information. This study aims to determine the topography of a slope by using a digital camera mounted on UAV to photograph with a high degree of overlap. The 3D point clouds data were generated through image feature point extraction integrated with accurate GPS ground control points. It is found in this study that the obtained Digital Surface Model (DSM) data, compared with the traditional field surveying techniques, has much superior performance. The resolution of the DSM has reached 1.58 cm. Also, the error of elevation and distance between DSM and actual 3D coordinates obtained by traditional total station survey is acceptance. It is clear that such a UAV surveying technique can replace conventional surveying methods and provide complete and accurate 3D topography information in automatic and highly efficient manner for most geotechnical applications.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.