Issue |
MATEC Web Conf.
Volume 147, 2018
The Third International Conference on Sustainable Infrastructure and Built Environment (SIBE 2017)
|
|
---|---|---|
Article Number | 01002 | |
Number of page(s) | 7 | |
Section | Structure and Material | |
DOI | https://doi.org/10.1051/matecconf/201814701002 | |
Published online | 22 January 2018 |
On the accuracy and convergence of the hybrid FE-meshfree Q4-CNS element in surface fitting problems
Master Program of Civil Engineering, Petra Christian University, Surabaya 60236, Indonesia
* Corresponding author: wftjong@petra.ac.id
In the last decade, several hybrid methods combining the finite element and meshfree methods have been proposed for solving elasticity problems. Among these methods, a novel quadrilateral four-node element with continuous nodal stress (Q4-CNS) is of our interest. In this method, the shape functions are constructed using the combination of the ‘non-conforming’ shape functions for the Kirchhoff’s plate rectangular element and the shape functions obtained using an orthonormalized and constrained least-squares method. The key advantage of the Q4-CNS element is that it provides the continuity of the gradients at the element nodes so that the global gradient fields are smooth and highly accurate. This paper presents a numerical study on the accuracy and convergence of the Q4-CNS interpolation and its gradients in surface fitting problems. Several functions of two variables were employed to examine the accuracy and convergence. Furthermore, the consistency property of the Q4-CNS interpolation was also examined. The results show that the Q4-CNS interpolation possess a bi-linier order of consistency even in a distorted mesh. The Q4-CNS gives highly accurate surface fittings and possess excellent convergence characteristics. The accuracy and convergence rates are better than those of the standard Q4 element.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.