Issue |
MATEC Web Conf.
Volume 140, 2017
2017 International Conference on Emerging Electronic Solutions for IoT (ICEESI 2017)
|
|
---|---|---|
Article Number | 01028 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/matecconf/201714001028 | |
Published online | 11 December 2017 |
Comparing Common Average Referencing to Laplacian Referencing in Detecting Imagination and Intention of Movement for Brain Computer Interface
1
Polytechnic of Tuanku Syed Sirajuddin, 02600, Perlis, Malaysia
2
Biomedical Engineering, University of Strathclyde G4 0NW, Glasgow, United Kingdom.
3
Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin (UniSZA), Kuala Terengganu, Malaysia
Brain-computer interface (BCI) is a paradigm that offers an alternative communication channel between neural activity generated in the brain and the user’s external environment. This paper investigates detection of intention of movement from surface EEG during actual and imagination of movement which is essential for developing non-invasive BCI system for neuro-impaired patients. EEG signal was recorded from 11 subjects while imagining and performing right wrist movement in multiple directions using 28 electrodes based on international 10-20 standard electrode placement locations. The recorded EEG signal later was filtered and pre-processed by spatial filter namely; Common average reference (CAR) and Laplacian (LAP) filter. Features were extracted from the filtered signal using ERSP and power spectrum and classified by k-nearest neighbour (k-NN) and quadratic discriminant analysis (QDA) classifiers. The classification results show that LAP filter has outperformed CAR with respect to classification. Classification accuracy ranged from 63.33% to 100% for detection of imagination of movement and 60% to 96.67% for detection of intention of actual movement. In both of detection of imagination and intention of movement k-NN classifier gave better result compared to QDA classifier.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.