Issue |
MATEC Web Conf.
Volume 139, 2017
2017 3rd International Conference on Mechanical, Electronic and Information Technology Engineering (ICMITE 2017)
|
|
---|---|---|
Article Number | 00014 | |
Number of page(s) | 5 | |
DOI | https://doi.org/10.1051/matecconf/201713900014 | |
Published online | 05 December 2017 |
Design Analysis Method for Multidisciplinary Complex Product using SysML
School of Mechanical Engineering and Automation, Beihang University, 100191 Beijing, China
* Corresponding author: ryukeiko@buaa.edu.cn
In the design of multidisciplinary complex products, model-based systems engineering methods are widely used. However, the methodologies only contain only modeling order and simple analysis steps, and lack integrated design analysis methods supporting the whole process. In order to solve the problem, a conceptual design analysis method with integrating modern design methods has been proposed. First, based on the requirement analysis of the quantization matrix, the user’s needs are quantitatively evaluated and translated to system requirements. Then, by the function decomposition of the function knowledge base, the total function is semi-automatically decomposed into the predefined atomic function. The function is matched into predefined structure through the behaviour layer using function-structure mapping based on the interface matching. Finally based on design structure matrix (DSM), the structure reorganization is completed. The process of analysis is implemented with SysML, and illustrated through an aircraft air conditioning system for the system validation.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.