Issue |
MATEC Web Conf.
Volume 132, 2017
XIII International Scientific-Technical Conference “Dynamic of Technical Systems” (DTS-2017)
|
|
---|---|---|
Article Number | 04021 | |
Number of page(s) | 5 | |
Section | Fundamental methods of system analysis, modeling and optimization of dynamic systems | |
DOI | https://doi.org/10.1051/matecconf/201713204021 | |
Published online | 31 October 2017 |
Regulator synthesis for the self-sensing control system of the proportional electromagnet dc based on reduced-order models
SRSPU (NPI), Department of Information and Measuring Systems and Technologies, 346428 Novocherkassk Russia
* Corresponding author: d.v.shaykhutdinov@gmail.com
Modern DC proportional solenoid control systems use current values in magnetizing coils, or specialized sensors for position determination. These methods do not provide the possibility of accurate control and diagnostics, in case of aiming to the miniaturization of finished devices. In this article, it is proposed to use methods of self-sensory identification of the moving element position based on the method of the full-scale-model experiment. The functioning of the method is based on the electromagnet model obtained by the reduced-order model approach. These models have an advantage in the calculation speed in comparison with finite element models and have an advantage in accuracy in comparison with analytical models. Ansys Electronics is used to obtain the model. The electromagnetic control system is proposed. Its model is implemented in the system Matlab Simulink. Synthesis of PID-regulator parameters using Matlab is performed. The results of a study of a control system for a given displacement with the aid of the obtained control system are presented.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.