Issue |
MATEC Web Conf.
Volume 131, 2017
UTP-UMP Symposium on Energy Systems 2017 (SES 2017)
|
|
---|---|---|
Article Number | 04010 | |
Number of page(s) | 6 | |
Section | Economic, environmental, social and policy aspects of energy | |
DOI | https://doi.org/10.1051/matecconf/201713104010 | |
Published online | 25 October 2017 |
Energy efficient of the residential buildings based climatic condition using experimental design: a case study in malaysia
1 Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia
2 Faculty of Mechanical Engineering, Department of Materials, Manufacturing & Industrial Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
* Corresponding author: morteza.assadi@utp.edu.my
In recent years, energy consumption has become a critical issue in the developed and developing countries. Residential buildings are one of the most users of energy in the construction sector that use the highest share of energy. This paper aims at evaluating the effect of four factors that are temperature, humidity, airflow and pressure on the cooling load in the residential buildings. To achieve this goal, statistical experimental design is used to determine the optimum setting of factors that result in optimum energy usage. Simulation software and energy analysis is used to simulate a two-storey building in Malaysia as the case of study. Final results showed that the temperature, humidity and interaction between them have the most significant effect on the energy cooling load. Moreover, to obtain the minimum value of cooling load the temperature and humidity should be equal to A=20 Celsius degree and B=60% respectively. In addition, the other two insignificant factors, airflow and pressure should be placed at the high level which are equal to C=3 cubic meters per hour, and D=6 Pascal (P) respectively.
© The authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.