Issue |
MATEC Web Conf.
Volume 131, 2017
UTP-UMP Symposium on Energy Systems 2017 (SES 2017)
|
|
---|---|---|
Article Number | 03017 | |
Number of page(s) | 8 | |
Section | Energy management and conservation | |
DOI | https://doi.org/10.1051/matecconf/201713103017 | |
Published online | 25 October 2017 |
Single and Multiple variables control using Tree Physiology Optimization
Electrical and Electronic Engineering Department, Universiti Teknologi PETRONAS, 31750, Tronoh, Perak, Malaysia
* Corresponding author: abdul_g01772@utp.edu.my
This paper presents the tuning of single-input single-output (SISO), and multiple-input multiple-output (MIMO) control system using Tree Physiology Optimization (TPO). TPO is a metaheuristic optimization algorithm that has a clustered diversification search strategy inspired from plant shoots growth. The clustered diversification is referred as tree branch and leaves. The exploration is amplified from roots growth counterparts. In the proposed method, each shoot from each branch search for possible solution in parallel and the fitness is evaluated based on all best values found by branch search. The proposed algorithm is also compared with deterministic gradient-free algorithm: Nelder-Mead simplex (NMS) and another metaheuristic algorithm: Particle Swarm Optimization (PSO). Results shown that TPO is able to find good PID parameters with lesser settling time for SISO and MIMO process. NMS is also able to find good PID parameters for SISO with lesser performance index, however not able to find better solution in MIMO control. PSO converged prematurely in SISO control and has high overshoot for MIMO control optimization.
© The authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.