Issue |
MATEC Web Conf.
Volume 131, 2017
UTP-UMP Symposium on Energy Systems 2017 (SES 2017)
|
|
---|---|---|
Article Number | 03014 | |
Number of page(s) | 7 | |
Section | Energy management and conservation | |
DOI | https://doi.org/10.1051/matecconf/201713103014 | |
Published online | 25 October 2017 |
A new dewatering technique for stingless bees honey
1 Meliponini Engineering Laboratory (MepEL), Energy Sustainability Focus Group (ESFG), Faculty of Mechanical Engineering, Universiti Malaysia Pahang
2 Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
3 Department of Mechanical Engineering, Universiti Teknologi Petronas, Bandar Seri Iskandar, 31750, Tronoh, Perak, Malaysia
One of the problems faced in stingless bee honey storage is spoilage by the fermentation process occurs in honey due to its high water content. There are a few techniques available currently, but they are time consuming and there is excessive heat involved in the process. The temperature of the process must be kept low because excessive heat can deteriorate nutrition value and biochemical content in honey. Hence, a new method of honey dewatering was developed using a Low Temperature Vacuum Drying (LTVD) with induced nucleation technique.The objective of this research is to investigate the performance of a LTVD with induced nucleation to reduce the water content in honey. First, the honey was placed in a pressure vessel, and then air was removed. Then, the honey was slightly heated at 30°C and the water content before and after the experiment was measured by a refractometer. The steps were repeated until the water content reached below 20%. It was found that the LTVD method improved the water removal rate significantly with an average of 0.15% of water content per minute. That is 3 times much faster than the conventional method of low temperature heating by Tabouret. Higher temperature during dewatering process improved the dewatering rate significantly. It can be concluded that LTVD is a promising option in tackling the high water content in stingless bee honey issue.
© The authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.