Issue |
MATEC Web Conf.
Volume 119, 2017
The Fifth International Multi-Conference on Engineering and Technology Innovation 2016 (IMETI 2016)
|
|
---|---|---|
Article Number | 01012 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/matecconf/201711901012 | |
Published online | 04 August 2017 |
Analysis and simulation on two types of thrust reversers in an aircraft engine
School of Aeronautical Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing, China
a Corresponding author : hejingwu@buaa.edu.cn
With rapid development of new composite material and manufacturing, innovative engineering solutions are supplied to the advanced nacelle, such as integrated propulsion system(IPS), carbon-fiber composite inner skin by single-piece molding process,which offers a reduction in fuel burn and less noise produced by engines. The advanced nacelle has an O-duct thrust reverser demonstrator whose composite structure is in the form of an “O” as opposed to the traditional “D-duct”. A comparative study is to be conducted to investigate the differences between the latest O-duct and conventional D-duct in numerical approaches. To focus on the quantitative analysis of thrust reverser’s operation, this paper mainly uses CATIA/Digital Mock Up(DMU) to simulate under deployment and stowed conditions of two different thrust reverser. After comparing the structural weight, the design models of blocker door are built for kinematic analysis of relevant mechanism and simulation. The results show that simplified design and elimination of multiple interfaces generates weight saving, O-duct improves airflows within the engine, meanwhile D-duct has excellent cost effective and maintainability.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.