Issue |
MATEC Web Conf.
Volume 117, 2017
RSP 2017 – XXVI R-S-P Seminar 2017 Theoretical Foundation of Civil Engineering
|
|
---|---|---|
Article Number | 00185 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/matecconf/201711700185 | |
Published online | 24 July 2017 |
Calculation of the hydraulic characteristics of the protective coating used in trenchless technologies for the construction and renovation of pipelines to extend their service life
Moscow state university of civil engineering, Yaroslavskoye shosse, 26, Moscow, Russia, 129337
* Corresponding author: <orlov950@yandex.ru>
The lifetime of the pipeline, which undergoes trenchless repair by pulling and then fixing various types of internal protective coatings inside, is determined by the strength characteristics of the two-layer structure “old pipeline + internal protective coating”. Hydraulic parameters of internal protective coatings, such as surface roughness and degree of hydrophobicity (water repellency), can play a role in prolonging the life of the repaired pipeline. With a high degree of hydrophobicity of the protective coating, the contact of the transported liquid with the walls of the pipeline during its operation in the non-pressure regime decreases, which leads to a decrease in the negative impact on the walls, in particular, their attrition, interaction with the specific structure of the coating material, which in turn reduces the energy costs when transporting water. Given article deals with a mathematical description of the interaction of the surface structure (with its inherent wetting ability) and the transported liquid in a mini-stream created on an inclined open chute imitating the inner surface of a pressureless pipeline. The theoretical positions and methodology for calculating the degree of hydrophobicity are based on research conducted on the basis of frontal and coaxial (along the flow) digital photo and video. T
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.