Issue |
MATEC Web Conf.
Volume 115, 2017
XXXIII Siberian Thermophysical Seminar (STS-33)
|
|
---|---|---|
Article Number | 02016 | |
Number of page(s) | 4 | |
Section | Chapter 2 Turbulent flows, heat and mass transfer in single-phase flows, heat transfer enhancement | |
DOI | https://doi.org/10.1051/matecconf/201711502016 | |
Published online | 10 July 2017 |
Direct numerical simulation of Mhd heat transfer of the liquid metal in a horizontal pipe with the joint effect of the longitudinal magnetic field and thermo-gravitational convection
National Research University «Moscow Power Engineering Institute», 111250 Moscow, Russia
* Corresponding author: akhmedagaev.r.m@gmail.com
The results of the direct numerical simulation (DNS) of the MHD heat transfer in turbulent flow of liquid metal (LM) in a horizontal pipe under the joint influence of a longitudinal magnetic field (MF) and thermo-gravitational convection (TGC) are presented. Discusses the characteristics of hydrodynamics and heat transfer in the longitudinal MF in the absence of TGC. Suppression of turbulent transport is observed with an increase in the Hartmann number: the heat transfer coefficients, the friction coefficient. The authors calculated the effect of TGC in a strong longitudinal MF for a homogeneous heating. Investigated the averaged fields of velocity and temperature, heat transfer characteristics, the distribution of wall temperature along the perimeter of the cross section of the pipe. The effect of TGC on the velocity field is affected stronger than in the temperature field.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.