Issue |
MATEC Web Conf.
Volume 109, 2017
2017 2nd International Conference on Materials Science and Nanotechnology (ICMSNT 2017) – 2017 2nd International Symposium on Material Science and Technology (ISMST 2017)
|
|
---|---|---|
Article Number | 03005 | |
Number of page(s) | 6 | |
Section | Chapter 3: Materials Processing Technologies | |
DOI | https://doi.org/10.1051/matecconf/201710903005 | |
Published online | 31 May 2017 |
One-pot Synthesis of Octyne-Ruthenium on Carbon Nanoparticles
1 Department of Chemistry, Faculty of Science, Rangsit University, Patumtani, Thailand
2 Department of Chemistry and Biochemistry, University of California, Santa Cruz, US
a Corresponding author: kanda@rsu.ac.th
The attempts to manipulate ruthenium nanoparticle by the passivation of π bonds linkage is of interest for many years. That is the way to enhance its optical properties and fluorescence characteristics which can promote the usage for sensor application. Other view, the usage of carbon nanoparticle is governed in many aspects including its fluorescence properties. Therefore, the combination between those two valued nanoparticles was set by conducting the simple synthesis method. With the as-prepared carbon nanoparticles, all other reagents (ruthenium (III) chloride, octyne and Sodium borohydride) were mixed in the same batch. The ratio of carbon substrate, ruthenium (III) chloride and octyne was 10: 1: 3. The particle yielded was then purified and subjected to characterize using some spectroscopy techniques including photoluminescence. The results showed that size of carbon particle before and after ruthenium deposition were 5.0 and 6.3 nanometers, respectively. Octyne was coordinated self-assembly on the ruthenium surface which was 8.1 nanometers in diameter. Moreover, octyne-protected ruthenium on carbon nanoparticles showed the remarkably increasing of fluorescence Intensity. Therefore, the functionalization of carbon nanoparticle with octyne-ruthenium can be a promising strategy to develop a novel complex of ruthenium.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.