Issue |
MATEC Web Conf.
Volume 103, 2017
International Symposium on Civil and Environmental Engineering 2016 (ISCEE 2016)
|
|
---|---|---|
Article Number | 05014 | |
Number of page(s) | 9 | |
Section | Sustainable Environmental Sciences and Technology | |
DOI | https://doi.org/10.1051/matecconf/201710305014 | |
Published online | 05 April 2017 |
Evaluation of physical, chemical and heavy metal concentration of food waste composting
1 Senior Lecturer, Department of Environmental Engineering and Water Resources, Universiti Tun Hussein Onn Malaysia (UTHM) 86400 Parit Raja, Batu Pahat, Johor, Malaysia
2 Department of Environmental Engineering and Water Resources, Universiti Tun Hussein Onn Malaysia (UTHM) 86400 Parit Raja, Batu Pahat, Johor, Malaysia
* Corresponding author: aeslinaabdulkadir@gmail.com
In this study, food waste composting with rice husk and coconut fibre as compost medium were carried out. Two types of different fermentation liquids were prepared which were fermented liquid (banana peel) and fermented liquid from fermented soybeans. During the composting process, a compost samples for a twenty week duration at an interval time of two weeks. Among the physico-chemical parameters that were tested were temperature, moisture content, pH value, Total Nitrogen, Total Phosphorous, Potassium and Total Organic Carbon and Carbon Nitrogen ratio. Heavy metals such as copper, cadmium, lead, nickel and arsenic were observed and analysed. From this study, it was found that, the temperature increased during the thermophilic phase while there was gradually increase of Total Nitrogen, Total Phosphorous and Potassium from the beginning till the end of the composting process. It was also found that the total organic carbon (TOC) and the carbon nitrogen ratio decreased significantly during the decomposition process. Traces amounts of heavy metals were also detected and remains below the standard Malaysian Environmental regulations. It was concluded that, the composting process was faster with processed food waste followed by combination of processed food waste and raw. Raw food waste were demonstrated the lowest degradation rate.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.