Issue |
MATEC Web Conf.
Volume 103, 2017
International Symposium on Civil and Environmental Engineering 2016 (ISCEE 2016)
|
|
---|---|---|
Article Number | 04017 | |
Number of page(s) | 8 | |
Section | Urban Hydrology and Hydraulic Research | |
DOI | https://doi.org/10.1051/matecconf/201710304017 | |
Published online | 05 April 2017 |
Evaluation on Flow Discharge of Grassed Swale in Lowland Area
Faculty of Civil and Environmental Engineering, Department of Water and Environmental Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor
* Corresponding author: aliza@uthm.edu.my
Grassed swale is an open vegetated channel designed specifically in attenuating stormwater runoff to decrease the velocity, to reduce the peak flows, and minimize the causes of flood. Therefore, the fundamental of this study is to evaluate the flow discharge of swale in Universiti Tun Hussein Onn Malaysia (UTHM), which has flat land surface area. There are two sites of study were involved to assess the performance of swale as stormwater quantity control, named as swale 1 and swale 2. Data collection was conducted on 100 meters of length for each swale. The velocity of swale was measured thrice by using a current meter according to the six-tenths depth method, after a rainfall event. The discharge of drainage area in UTHM was determined by the Rational Method (Qpeak), and the discharge of swales (Qswale) was evaluated by the Mean-Section Method. Manning’s roughness coefficient and the infiltration rate were also determined in order to describe the characteristics of swale, which contributing factors for the effectiveness of swale. The results shown that Qswale is greater than Qpeak at swale 1 and swale 2, which according to the Second Edition of MSMA, the swales are efficient as stormwater quantity control in preventing flash flood at the campus area of UTHM.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.