Issue |
MATEC Web Conf.
Volume 92, 2017
Thermophysical Basis of Energy Technologies (TBET-2016)
|
|
---|---|---|
Article Number | 01039 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/matecconf/201792010039 | |
Published online | 21 December 2016 |
Analytical estimation of particle shape formation parameters in a plasma-chemical reactor
1 Institute for Problems of Chemical and Energetic Technologies of the Siberian Branch of the Russian Academy of Sciences, 659322 Biysk, Russia
2 National Research Tomsk State University, 634050 Tomsk, Russia
3 National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
* Corresponding author: bvborisov@tpu.ru
Analytical estimation of particle shape formation parameters in a plasma-chemical reactor implementing the process of thermochemical decomposition of liquid droplet agents (precursors) in the flow of a high-temperature gaseous heat-transfer medium was obtained. The basic factor which determines the process is the increase of concentration of a dissolved salt precursor component at the surface of a liquid particle due to solvent evaporation. According to the physical concept of the method of integral balance the diffusion process of concentration change is divided into two stages: the first stage is when the size of gradient layer does not reach the center of a spherical droplet and the second stage when the concentration at the center of a liquid droplet begins to change. The solutions for concentration fields were found for each stage using the method of integral balance taking into account the formation of salt precipitate when the concentration at the surface of the droplet reaches certain equilibrium value. The results of estimation of the influence of various reactor operation parameters and characteristics of initial solution (precursor) on the morphology of particles formed – mass fraction and localization of salt precipitate for various levels of evaporation.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.