Issue |
MATEC Web Conf.
Volume 87, 2017
The 9th International Unimas Stem Engineering Conference (ENCON 2016) “Innovative Solutions for Engineering and Technology Challenges”
|
|
---|---|---|
Article Number | 01004 | |
Number of page(s) | 7 | |
Section | Civil Engineering | |
DOI | https://doi.org/10.1051/matecconf/20178701004 | |
Published online | 12 December 2016 |
1D Compressibility of DMS Treated With Cement-GGBS Blend
1 Master’s Student, University of Tun Hussein Onn Malaysia, 86400, Parit Raja, Johor, Malaysia
2 Senior Lecturer,University of Tun Hussein Onn Malaysia, 86400, Parit Raja, Johor, Malaysia
a Corresponding author: suaathikaliannan@gmail.com
Great quantities of dredged marine soils (DMS) have been produced from the maintenance of channels, anchorages and for harbour development. DMS have the potential to pose ecological and human health risks and it is also considered as a geowaste. Malaysia is moving towards the sustainability approach and one of the key factors to achieve it is to reduce waste. Thus, this geowaste should be generated as a new resource to substitute soil for civil works such as for land reclamation and backfilling. This shows the improved settlement of consolidation in treated DMS. DMS is referred to as a cohesive soil which includes clayey silt, sandy clay, silty clay and organic clay. This type of soil has low strength and high compressibility. The objectives were achieved through literature review analysis and also laboratory test which was one dimensional oedometer test. On the other hand, treated DMS with more ground granulated blast furnace slag (GGBS) gives a lower settlement compared to specimen with higher percentage of cement in a treated soil. Thus this shows that cement content can be reduced in soil solidification when GGBS is added. The optimum binder ratio found was 3:7 where 3 is cement and 7 is GGBS.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.