Issue |
MATEC Web Conf.
Volume 85, 2016
Chemistry and Chemical Technology in XXI Century (CCT 2016)
|
|
---|---|---|
Article Number | 01017 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/matecconf/20168501017 | |
Published online | 17 November 2016 |
Adsorption of inorganic ions from aqueous solutions using mineral sorbent - tripoli
Tomsk Polytechnic University, Tomsk, Russia
* Corresponding author: nina.b.shakhova@gmail.com
The present research considers the adsorption of H2AsO4–, CrO42–, Ni2+, Fe3+ ions from their aqueous solutions by mineral sorbent - tripoli. Tripoli was characterized by different physico-chemical methods such as X-ray phase analysis, inductively coupled plasma atomic emission spectrometry, method of thermal desorption of nitrogen. Contact time, specific surface area, specific pore volume and surface charge of tripoli have been determined. The effect of tripoli surface area modification by iron (III) oxide-hydroxide on tripoli sorption capacity for the arsenic anions has been investigated. The maximum adsorption was found to occur within 30 minutes of contact time. Different models including the pseudo-first-order kinetic and the pseudo-second-order kinetic equations were used to analyse kinetic data. All the models being considered, it has been stated that the pseudo-second-order kinetic model is the most appropriate to describe the adsorption behaviour of Fe3+ ions on tripoli. The adsorption has been explained in terms of Langmuir and Freundlich isotherms. Based on values of correlation coefficients, H2AsO4–, CrO42–, Ni2+, Fe3+ sorption isotherm data were better fitted by Langmuir model. It has been detected that the modification of mineral sorbent (tripoli) leads to the increase in H2AsO4– adsorbing capacity of tripoli. In general, the results indicated that tripoli can be an efficient low-cost sorbent for removing H2AsO4–, Ni2+, Fe3+ ions from aqueous solutions.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.