Issue |
MATEC Web Conf.
Volume 76, 2016
20th International Conference on Circuits, Systems, Communications and Computers (CSCC 2016)
|
|
---|---|---|
Article Number | 05013 | |
Number of page(s) | 6 | |
Section | Signal Processing | |
DOI | https://doi.org/10.1051/matecconf/20167605013 | |
Published online | 21 October 2016 |
An Innovative Procedure for the Rolling Noise Evaluation
1 University of Naples “Federico II”, Dept. of Industrial Engineering, Via Claudio, 21 – 80125 Napoli - Italy
2 HITACHI RAIL, Via Argine, 425 - 80147, Napoli - ITALY
a Corresponding author: massimo.viscardi@unina.it
Noise is often generated by pressure changes in the air induced by mechanical vibrations. The study of these phenomena is known as structural acoustics or, in a more fashionable way, virboacoustics. Vibroacoustics is the study of the mechanical waves in structures and how they interact with, and radiate into, adjacent media. In railway the most important noise source, based on fluid and structure interaction is the rolling noise. The aim of the paper is the development and implementation of a numerical method for the rail decay rate and combined roughness calculation according to the FprCEN/TR 16891:2015 and a subsequent evaluation of the excess noise level in accordance with the ISO/FDIS 3095: 2013. The tool, as a final results, will make possible the evaluation of the rail parameters without the involvement of long and expensive test campaign based on classical roughness measurement methods and will permit the compensation of the roughness induced excess noise level for a comparative comprehension of the acoustic experimental data.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.