Issue |
MATEC Web Conf.
Volume 67, 2016
International Symposium on Materials Application and Engineering (SMAE 2016)
|
|
---|---|---|
Article Number | 06013 | |
Number of page(s) | 6 | |
Section | Chapter 6 Materials Science | |
DOI | https://doi.org/10.1051/matecconf/20166706013 | |
Published online | 29 July 2016 |
Effects of Low Temperature and High Strain Rate on the Tensile Behaviors of High-Performance Energetic Composite
601 Staff room, Xi’an Hi-Tech Institute, Xi’an 710025, China
a qinglongzaitian888@163.com
b qianghf@126.com
c wangbintai@126.com
d zhuzj@126.com
To further study the effects of low temperature and high strain rate on the tensile behaviors of hydroxyl-terminated polybutadiene (HTPB) propellant, an INSTRON testing machine was applied for carrying out the uniaxial tensile tests at low temperatures and room temperature after storage at low temperatures. The strain rates are in the range of 0.40 to 85.71 s−1. Scanning electron microscope (SEM) was used for examining the failure mechanisms of HTPB propellant under the test conditions. The results reveal that HTPB propellant is still capable of large deformation at lower strain rates and low temperatures in the glass transition and glass state. The characteristics of stress-strain curves at room temperature after storage at low temperatures are the same with that directly obtained at room temperature. The effect of strain rate on the elastic modulus E at various temperatures is almost the same. However, the effect of strain rate on the maximum tensile stress σm becomes weak with decreasing temperature. Furthermore, the strain εm is nearly independence of the strain rate at higher strain rates and the lowest test temperature in glass state. Continuously decreasing temperature can more easily cause the extensive brittle fracture of AP particles, even at lower strain rates. The temperature changes from room temperature to low temperature and then from low temperature to room temperature in a short time cannot influence the failure mechanism of HTPB propellant at room temperature and high strain rate.
Key words: low temperature / high strain rate / tensile behaviors / high-performance energetic composite
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.