Issue |
MATEC Web Conf.
Volume 63, 2016
2016 International Conference on Mechatronics, Manufacturing and Materials Engineering (MMME 2016)
|
|
---|---|---|
Article Number | 02015 | |
Number of page(s) | 4 | |
Section | Manufacturing and Design Science | |
DOI | https://doi.org/10.1051/matecconf/20166302015 | |
Published online | 12 July 2016 |
Study on application and performance of OPPC under ice-phased condition
Information and Telecommunication Company of Shanxi Electric Power Corporation, Taiyuan 031000, China
a Corresponding author: 525492887@qq.com
The optical fiber composite overhead line (OPPC) combines electricity transmission and information transmission, is used increasingly widely in the electric power system, further broadening the application area of our country’s special cable in the meantime. In heavy ice-phased regions, the designing parameters and technical requirements should be of higher standards, or it will directly affect the safety and stability of electric communication system’s operation. Therefore, OPPC under ice condition performance changes should cause enough attention. This article proposes simulation test of OPPC under ice-cladding condition, basing on which the mechanical properties and light transmission performance were calculated and analyzed. Then it comes to a conclusion that the ice-cladding has a variety of impact on OPPC in the stress and strain of fiber optic cable, optical transmission performance, residual RTS and other related elements. The test results show that the corresponding tension values under ice thickness would change and should be taken seriously into consideration when discussing the application of OPPC line under ice-phased condition.
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.