Issue |
MATEC Web of Conferences
Volume 60, 2016
2016 3rd International Conference on Chemical and Biological Sciences
|
|
---|---|---|
Article Number | 01007 | |
Number of page(s) | 5 | |
Section | Materials science and Application | |
DOI | https://doi.org/10.1051/matecconf/20166001007 | |
Published online | 08 June 2016 |
Chicken eggshell as biosorbent: Artificial intelligence as promising approach in optimizing study
Faculty of Engineering, Technology & Built Environment, UCSI University, 56000 Cheras Kuala Lumpur, Malaysia
Response Surface Methodology (RSM) is the most popular approach for optimization study in various biochemical processes nowadays. Artificial Neural Network (ANN) has emerged as one of the most efficient methods in empirical modeling and optimization, particularly for non-linear systems. In this study, the estimation capability of RSM and ANN models was compared in copper removal from aqueous solution. The experiments were carried out based on a 3-level and 4-variable Central Composite Design (CCD). The RSM results revealed that the relationship between the response and independent variable could be represented by the quadratic polynomial model. In the development of ANN model, the optimal configuration of the model was found to be 4-10-1. Estimated responses from both models were compared with the experimentally determined responses to determine predictive capabilities of both techniques. Comparison of two methodologies showed that the ANN model was more accurate and exhibited better generalization capability than RSM, thus indicated a clear superiority than the latter in capturing the non-linear behaviour of the adsorption process using chicken eggshell as biosorbent.
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.