Issue |
MATEC Web of Conferences
Volume 59, 2016
2016 International Conference on Frontiers of Sensors Technologies (ICFST 2016)
|
|
---|---|---|
Article Number | 05004 | |
Number of page(s) | 5 | |
Section | Design and Implementation of Robot | |
DOI | https://doi.org/10.1051/matecconf/20165905004 | |
Published online | 24 May 2016 |
ANALYSIS of Control Force Grasping for a Multifunctional Five Fingered Robot to Pick-up Various of Components
1 University of Udayana, Mechanical Engineering Department, Campus Bukit Jimbaran Bali, Indonesia
2 University of Udayana, Electrical Engineering Department, Campus Bukit Jimbaran Bali, Indonesia
Multi-fingered robot gripper has become popular in the major research topics as grasping an object in robotic systems. The author considers a matter of style-based control model for a multi-fingered robot hand grasping an object with a known geometric characteristics. This paper introduces design process and analysis of contact force the five fingered gripper suitable to handle several of objects. The author applied Simulink/SimMechanics, Support package Arduino and Inventor software packages to facilatate and integrated the design of contact force gripper systems. The advance of PID control is used to control dynamics motions of the five fingered gripper systems. The multifunction finger’s gripper is developed to handle the various components. Contact force between fingertips and object surface is computed using the Hooke law concept. The analysis of experiment result shows the optimum of contact forces are achieved to hold the object. The spring and damper algorithm is used to compute the interaction of force between fingertips and object surface.
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.