Issue |
MATEC Web of Conferences
Volume 59, 2016
2016 International Conference on Frontiers of Sensors Technologies (ICFST 2016)
|
|
---|---|---|
Article Number | 02001 | |
Number of page(s) | 4 | |
Section | Power system | |
DOI | https://doi.org/10.1051/matecconf/20165902001 | |
Published online | 24 May 2016 |
Integration of Hybrid PV/Wind Generation System Using Fuzzy MPPT in Grid Connected System for Remote Area
Electrical Engineering Department, Institut Teknologi Sepuluh Nopember, Surabaya - East Java. Indonesia
Photovoltaic and wind are renewable energy resources that widely used and grow rapidly in fulfilling electricity demand. Powers from both technologies depend on sunlight intensity and wind speed. For small scale power generation, DC voltage from both technologies is low and requires step-up converter to raise DC voltage ratio before converted into AC voltage. To optimize this system, step-up converter must have high ratio and efficiency to a distance of wide voltage input. This paper proposed an operation simulation and arrangement of DC-DC converter along with DC-AC from hybrid source PV-Wind which integrated to grid utilities without using storage device. High Gain Integrated Cascade Boost (HGICB) is DC-DC converter that has quadratic voltage ratio and used in this research. Then DC link connected to Voltage Source Inverter (VSI) which interconnected with utility grid and controlled by current control method. The total installed capacity of hybrid source is 4.4 kW. Wind turbine uses PMSG along with full bridge rectifier. To maximize and stabilize the generated power, MPPT fuzzy is used. Result from the simulation shows that converter capable to maintain maximum power whether from PV and wind turbine which canalized to utility grid in various irradiation condition, wind speed, and grid load alteration.
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.