Issue |
MATEC Web of Conferences
Volume 59, 2016
2016 International Conference on Frontiers of Sensors Technologies (ICFST 2016)
|
|
---|---|---|
Article Number | 01011 | |
Number of page(s) | 4 | |
Section | Electronic engineering and sensing technology | |
DOI | https://doi.org/10.1051/matecconf/20165901011 | |
Published online | 24 May 2016 |
Fabrication of a capacitive relative humidity sensor using aluminum thin films deposited on etched printed circuit board
Department of Physics, Ateneo de Manila University, Loyola Heights, Quezon City, Philippines, 1108
A capacitive humidity-sensing device was created by thermal evaporation of 99.999% aluminum. The substrate used for the coating was etched double-sided printed circuit board. The etched printed circuit board serves as the dielectric of the capacitor while the aluminum thin films deposited on either side serve as the plates of the capacitor. The capacitance was measured before and after exposure to humidity. The device was then calibrated by comparing the readings of capacitance with that of the relative humidity sensor of the Vernier LabQuest2. It was found that there is a linear relationship between the capacitance and relative humidity given by the equation C=1.418RH+29.139 where C is the capacitance and RH is the relative humidity. The surface of the aluminum films is porous and it is through these pores that water is adsorbed and capillary condensation occurs, thereby causing the capacitance to change upon exposure to humidity.
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.