Issue |
MATEC Web of Conferences
Volume 58, 2016
The 3rd Bali International Seminar on Science & Technology (BISSTECH 2015)
|
|
---|---|---|
Article Number | 03013 | |
Number of page(s) | 5 | |
Section | Information Technology and Information Systems | |
DOI | https://doi.org/10.1051/matecconf/20165803013 | |
Published online | 23 May 2016 |
The Application of EEMD and Neural Network Based on Polak-Ribiére Conjugate Gradient Algorithm for Crude Oil Prices Forecasting
University of Trunojoyo Madura, Indonesia
E-mail : latif.utm@gmail.com
Forecasting crude oil prices is very difficult to do because it has nonlinear and nonstationary characteristics. This research proposes a crude oil prices forecasting using a combination of EEMD and neural network. EEMD was used to decompose the price of crude oil into several IMFs and one residue. Before the training and testing was processed using FNN, EEMD output is normalized to fulfill network activation function. Data pattern of neural network was determined based on the results of normalization. The Learning method of neural network was based on Polak-Ribiére Conjugate Gradient algorithm. The output of neural networks on each component IMFs and the residue was aggregated using Adaline. The last process is denormalization of the Adaline output. Output of denormalization is the end result of the crude oil price forecasting. After forecasting results has been known, it then compared with the results of several neural networks learning algorithm. The result shows that the proposed method has better forecasting ability. This is indicated by the error value which was smaller than other forecasting algorithms for crude oil price forecasting.
Key words: Crude Oil Price / Forecasting / EEMD / PCG / Adaline
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.