Issue |
MATEC Web of Conferences
Volume 56, 2016
2016 8th International Conference on Computer and Automation Engineering (ICCAE 2016)
|
|
---|---|---|
Article Number | 07002 | |
Number of page(s) | 6 | |
Section | Machine vision and robot | |
DOI | https://doi.org/10.1051/matecconf/20165607002 | |
Published online | 26 April 2016 |
Development of a Control and Vision Interface for an AR.Drone
School of AMME, The University of Sydney, 2006, Australia
The AR.Drone is a remote controlled quadcopter which is low cost, and readily available for consumers. Therefore it represents a simple test-bed on which control and vision research may be conducted. However, interfacing with the AR.Drone can be a challenge for new researchers as the AR.Drone's application programming interface (API) is built on low-level, bit-wise, C instructions. Therefore, this paper will demonstrate the use of an additional layer of abstraction on the AR.Drone’s API via the Robot Operating System (ROS). Using ROS, the construction of a high-level graphical user interface (GUI) will be demonstrated, with the explicit aim of assisting new researchers in developing simple control and vision algorithms to interface with the AR.Drone. The GUI, formally known as the Control and Vision Interface (CVI) is currently used to research and develop computer vision, simultaneous localisation and mapping (SLAM), and path planning algorithms by a number of postgraduate and undergraduate students at the school of Aeronautical, Mechanical, and Mechatronics Engineering (AMME) in The University of Sydney.
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.