Issue |
MATEC Web of Conferences
Volume 51, 2016
2016 International Conference on Mechanical, Manufacturing, Modeling and Mechatronics (IC4M 2016)
|
|
---|---|---|
Article Number | 01001 | |
Number of page(s) | 7 | |
Section | Chapter 1: Engineering Simulation, Modelling and Analytical Studies | |
DOI | https://doi.org/10.1051/matecconf/20165101001 | |
Published online | 06 April 2016 |
Decoupling Kinematic Loops for Real-Time Multibody Dynamic Simulations
Taibah University, Mechanical Engineering Department, Almadinah Almonawarah, Saudi Arabia
a Corresponding author: momar@taibahu.edu.sa, momar23@gmail.com
Earth moving equipment are typically equipped with hydraulic cylinder actuators to perform the designated tasks. Multibody modelling of such systems results in models with kinematic loops that couples the motion variables of the loop bodies. Iterative solutions will be needed to satisfy the loop constraints and the applied constraints, which require evaluation of the constraint Jacobean matrix. The size of the Jacobean matrix and the associated projections depends on the number of motion variables in each kinematic loop. Consequently, the computational cost significantly increases as the number of variables in the kinematic loop increases. Real-time control and hybrid hardware-in-the-loop systems both require efficient and fast computational algorithms. Eliminating the kinematic loops can improve the computational efficiency and effectiveness of the control algorithms. This paper presents an efficient approach to eliminate the coupling due to the cylinder-rod connections and consequently the kinematic loops in the multibody models leading to efficient simulation. The proposed approach calculates the spatial accelerations and inertia forces of the actuator bodies and the interaction forces with other components. The actuator forces are then projected onto the connecting bodies leading to exact dynamics of the system.
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.