Issue |
MATEC Web of Conferences
Volume 40, 2016
2015 International Conference on Mechanical Engineering and Electrical Systems (ICMES 2015)
|
|
---|---|---|
Article Number | 02007 | |
Number of page(s) | 5 | |
Section | Mechanical engineering and dynamics | |
DOI | https://doi.org/10.1051/matecconf/20164002007 | |
Published online | 29 January 2016 |
Sand Particles Impact on the Tribological Behavior of Sliding Contact
Abu Dhabi Polytechnic, Electromechanical Engineering Department, P. O. Box 111499, Abu Dhabi, UAE
Lubricant contaminants cause severe problems to machines. Substantial research has been conducted to study the impact of such contaminates on the tribological performance of lubricated contacts. The primary goal of such studies is to find solutions to avoid the dirtiest cause of damaging machines’ parts and to reduce energy consumption and maintenance costs. The current study investigates the tribological behavior of contaminated lubricated contacts; the contaminants considered in this research are sand particles. The effect of the sand particles concentration levels on friction and wear of a tribological system under sliding contact was studied. Three different concentration levels were tested; 5%, 10% and 15%.The experimental program was carried out using an in-house built ball on disc machine at room temperature, constant normal load, constant speed, constant running time and constant travelling distance. Results showed that both friction coefficient and wear volume of the contacting surfaces are dependent on the concentration level of the sand particles. Both friction coefficient and wear volume increased by increasing the sand particles concentration. SEM was utilized to study the wear mechanisms of the contacting surfaces, it was found that the dominant wear mechanism in all cases was abrasive wear.
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.