Issue |
MATEC Web of Conferences
Volume 39, 2016
2015 2nd International Conference on Chemical and Material Engineering (ICCME 2015)
|
|
---|---|---|
Article Number | 02003 | |
Number of page(s) | 4 | |
Section | Alloy production and processing | |
DOI | https://doi.org/10.1051/matecconf/20163902003 | |
Published online | 13 January 2016 |
Finite element simulation of high-speed cutting of nickel-based alloy
1 Chinese Research Academy of Environmental Sciences in Beijing, China
2 Qingdao Technological University in Qingdao, China
3 Qingdao new world environmental protection limited liability company in Qingdao, China
a Corresponding author: yyong901@163.com
By analyzing microstructure of the material, a finite element model of high-speed cutting process more close to the practical instance was put forward. The microstructure of nickel-based alloy was obtained based SEM experiment, and the digital model of microstructure was built. Based on above study, finite element model of high-speed cutting of nickel-based alloy integrating macro and micro physical characters was established. Further, finite element simulation and analysis of high-speed cutting of nickel-based alloy were conducted, and the saw-tooth chip, cutting force variation curve and cutting temperature field distribution pictures were got. Research shows that grain boundary occur serious distortion at chip and tool contact area during saw-tooth chip forming, and the grain boundary structure changes will cause the change of cutting force during generating adiabatic shear band. So reducing cutting force and improving the processing quality can be achieved by changing the internal microscopic structure of workpiece.
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.